

Test report of

IES LM-79-08

Approved Method: Electrical and Photometric Measurements of Solid-State Lighting Products

Rendered to: <u>Artika for Living Inc.</u> <u>1756, 50e Avenue Montréal (Lachine), Québec Canada H8T 2V5</u>

For products: Under Cabinet Mount

Models No.: UCL

Test Date:Apr. 8, 2022 to Apr. 9, 2022Test Lab.:LCTECH Guangdong Testing Services Co., Ltd.
2/F., Technology and Enterprise Development Center, Guangyuan Road, Xiaolan,
Zhongshan, Guangdong, China
Tel:+86-760-22833366
E-mail:Service@lccert.com
http://www.lccert.comTest Sites:1/F., Building I, Technology and Enterprise Development Center, Guangyuan Road,
Xiaolan, Zhongshan, Guangdong, ChinaTemplate No.:LC-RT-PL-001 Rev.1.4Test Note:N/A

Complied by: Pengkang Liang

Apr. 12, 2022

Penyhangliang

Reviewed by: Lin Qiu Apr. 12, 2022

(in ain

The duplication of this report or parts of it and its use for advertising purposes is only allowed with permission of the testing laboratory. This report contains the result of the examination of the product sample submitted by the applicant. A general statement concerning the quality of the products from the series manufacture cannot be derived therefore. This report must not be used by the customer to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the US government.

Page 2 of 11

Table of Contents

1.	Genera	al3
	1.1	Product Information
	1.2	Standards or methods4
	1.3	Equipment list4
2.	Test co	onducted and method5
	2.1	Ambient Condition
	2.2	Power Supply Characteristics
	2.3	Seasoning and Stabilization
	2.4	Electrical Instrumentation
	2.5	Color Measurement Method5
	2.6	Total Luminous Flux Measurement Method5
	2.7	Luminous Intensity Distribution Measurement Method5
	2.8	Spatial Non-uniformity of Chromaticity5
3.	Test R	esult Summary6
	3.1	Electrical data6
	3.2	Photometric data6
	3.3	Color Rendering Details6
4.	Test D	ata7
	4.1	Spectral Distribution7
	4.2	ANSI Chromaticity Quadrangles Diagram7
	4.3	Goniometry Test Data
	4.4	Zonal Lumen Summary8
	4.5	Polar Curves9
	4.6	Candela Tabulation10
Ар	oendix A	Product Photo11

1. General

Page 3 of 11

1.1 Product Information

Brand Name	Artika
Product Type	Under Cabinet Mount
Model Number	UCL
Rated Inputs	120-240V,60Hz
Rated Power	27W
Rated Light output	-
Declared CCT	4000K
Power Supply	LED Driver
LED Package, Array or Module	-
Receipt Samples	1 unit
Sample Code of lab.	220406107002
Date of Receipt Samples	Apr. 6, 2022
Note	

Page 4 of 11

1.2 Standards or methods

The following standards are partly or totally used or referenced for test:

No.	Name
ANSI/NEMA/ ANSLG	Specifications for the Chromaticity of Solid State Lighting Products
C78.377-2011 or 2015 or	
2017	
ANSI C82.77-2002	Harmonic Emission Limits—Related Power Quality Requirements for Lighting
	Equipment
CIE Pub. No. 13.3-1995	Method of Measuring and Specifying Color Rendering of Light Sources
CIE Pub. No. 15:2004	Colorimetry
IES LM-79-08	Electrical and Photometric Measurements of Solid-State Lighting Products

1.3 Equipment list

Instrument	ID	Model name	Cal. date	Next cal. Date
AC Power supply	LC-I-987	APW-120N	2021-12-16	2022-12-15
AC Power supply	LC-I-989	APW-120N	2021-12-16	2022-12-15
Power analyzer	LC-I-PL-024	WT310E	2022-03-01	2023-02-28
Power analyzer	LC-I-954	WT210	2021-12-20	2022-12-19
Multimeter	LC-I-972	Fluke 17B	2021-07-12	2022-07-11
Photometric colorimetric electric system ¹ (2 meter sphere)	LC-I-956	HAAS-2000	Before use	Before use
Standard lamp ²	LC-I-PL-030	D204C	2021-07-09	2022-07-08
Luminous Flux Standard Lamp ³	LC-I-PL-027	24V/100W	2021-07-09	2022-07-08
Goniophotometer(with mirror)	LC-1-902	GMS2000	2021-04-22	2022-04-21
Wireless temperature and humidity transmitter	LC-I-PL-009	DWLR-DLR	2021-12-16	2022-12-15
Wireless temperature and humidity transmitter	LC-I-PL-008	DWLR-DLR	2021-12-16	2022-12-15

Note:

1, Bandwidth of spectroradiometer is 1 nm.

2, halogen lamp, 100W, omni-directional type, and its traceability to NIM.

3, halogen lamp, 100W, omni-directional type, and its traceability to NIM.

Page 5 of 11

2. Test conducted and method

The lamp/luminaire was operated at least 2 hours to reach stabilization and temperature equilibrium before test.

2.1 Ambient Condition

The ambient temperature in which measurements are being taken was maintained at $25^{\circ}C \pm 1^{\circ}C$; the air flow around the sample(s) being tested did not affect the performance.

2.2 Power Supply Characteristics

The AC power supply had a sinusoidal voltage wave shape at the prescribed frequency (60 Hz) such that the RMS summation of the harmonic components does not exceed 3 percent of the fundamental during operation of the test item.

The voltage of AC power supply (RMS voltage) applied to the device under test was regulated to within±0.2 percent under load.

2.3 Seasoning and Stabilization

No seasoning was performed in accordance with IESNA LM-79-08. And before the measurement, the sample was stabilized until the light output and power variations were less than 0.5% in 30 minutes intervals (3 readings, 15 minutes apart).

2.4 Electrical Instrumentation

The calibration uncertainties of the instruments for AC voltage and current were less than 0.2 percent, and the calibration uncertainty of the AC power meter was less than 0.5 percent(95 % confidence interval, k=2).

2.5 Color Measurement Method

Spectral radiant flux was measured by a sphere (2 meter)-spectroradiometer system, and the color characteristics (Color rendering index, correlated color temperature, chromaticity coordinate) were calculated from these by software automatically.

2.6 Total Luminous Flux Measurement Method

Total luminous flux was measured by type C goniophotometer system.

Light intensity distribution was measured by a type C goniophotometer (with mirror) which can keep the sample in burn position when the tests conduct, and the total luminous flux was calculated from the intensity data by software automatically.

2.7 Luminous Intensity Distribution Measurement Method

Luminous intensity distribution was measured by a mirror-type goniophotometer (Type C) which can keep the sample in burn position when the tests conduct, and the kinds of graph were generated by software automatically.

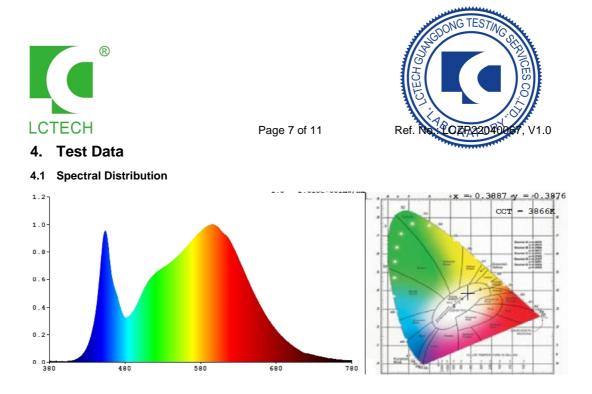
2.8 Spatial Non-uniformity of Chromaticity

The customer did not require this measurement.

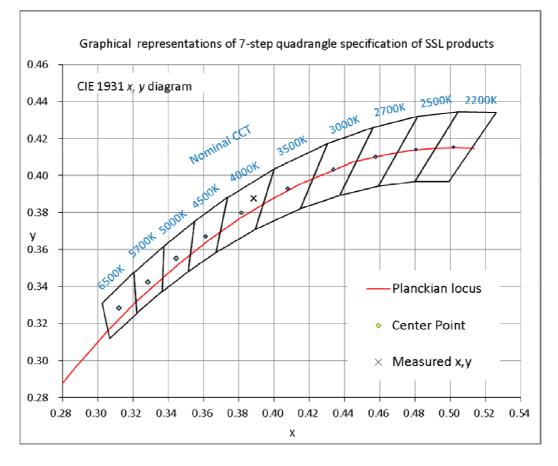
3. Test Result Summary

3.1 Electrical data

Criteria Item	Result(Sphere)	Result(Goniophotometer)
Input Voltage & Frequency	119.99V~60Hz	120.01V~60Hz
Input Current(A)	0.264	0.263
Total Power(W)	27.43	27.33
Power Factor	0.867	0.866
Off-state Power(W)	-	-


3.2 Photometric data

Criteria Item	Result(Sphere)	Result(Goniophotometer)
Total Lumens(Im)	-	1600.84
Luminaire Efficacy(Im/W)	-	58.57
Correlated Color Temperature (CCT)(K)	3866	-
Color Rendering Index (CRI)	83.2	-
R9	7	-
Chromaticity Coordinate (x,y)	x = 0.3887 y = 0.3876	-
Chromaticity Coordinate (u,v)	u = 0.2262 v = 0.3383	-
Chromaticity Coordinate (u',v')	u' = 0.2262 v' = 0.5075	-
Duv	0.0027	-
Zone Lumens between 0-60 °	-	78.59%
Poom Angle/50% (max)		C0/180=113.0°
Beam Angle(50%Imax)	-	C90/270=113.0°


3.3 Color Rendering Details

R1	R2	R3	R4	R5	R6	R7	R8
81	91	96	81	81	87	85	63
R9	R10	R11	R12	R13	R14	R15	-
7	78	80	63	84	98	74	-

Note: N/A

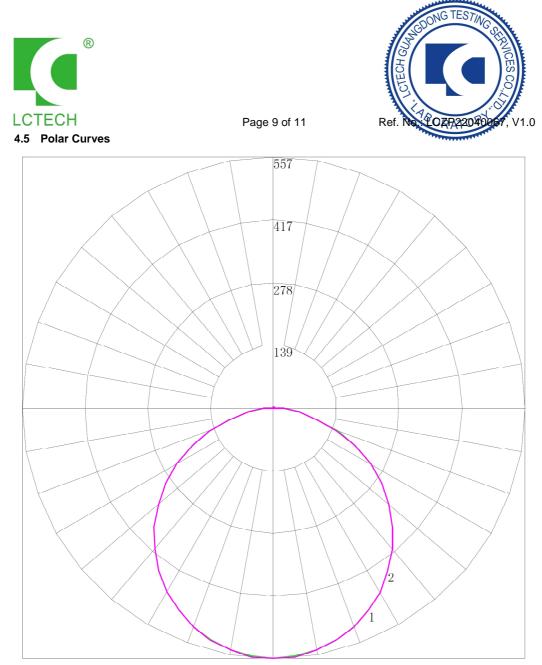
4.2 ANSI Chromaticity Quadrangles Diagram

LCTECH Guangdong Testing Services Co., Ltd.

Page 8 of 11

4.3	Goniometry Test Data	
-----	----------------------	--

CIE Type	Direct	Basic Luminous Shape	Rectangular		
Spacing Criteria (0-180)	1.26	Luminous Length	1.38 m		
Spacing Criteria (90-270)	1.26	Luminous Width	0.04 m		
Spacing Criteria (Diagonal)	1.40	Luminous Height	0.00 m		
Test Distance	29.75 m				


4.4 Zonal Lumen Summary

Zone	Lumens	%Lamp	%Fixt
0-20 0-30 0-40 0-60 0-80 0-90 10-90 20-40 20-50 40-70 60-80 70-80 80-90 90-110 90-120 90-130 90-150 90-180 110-180	203.66 432.82 709.50 1258.09 1565.78 1594.35 1541.67 505.84 793.82 746.14 307.69 110.15 28.57 2.80 3.49 4.15 5.41 6.49 3.69	12.70 27.00 44.30 78.60 97.80 99.60 96.30 31.60 49.60 49.60 46.60 19.20 6.90 1.80 0.20 0.30 0.30 0.40 0.20	$\begin{array}{c} 12.70\\ 27.00\\ 44.30\\ 78.60\\ 97.80\\ 99.60\\ 96.30\\ 31.60\\ 49.60\\ 46.60\\ 19.20\\ 6.90\\ 1.80\\ 0.20\\ 0.20\\ 0.30\\ 0.30\\ 0.40\\ 0.20\\ \end{array}$
0-180	1600.84	100.00	100.00

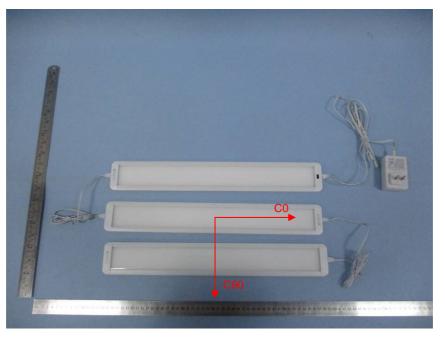
Total Luminaire Efficiency = 100.00%

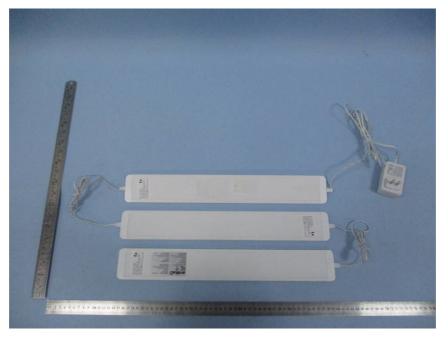
ZONAL LUMEN SUMMARY

Zone	Lumens
0-10	52.68
10-20	150.98
20-30	229.16
30-40	276.68
40-50	287.98
50-60	260.61
60-70	197.54
70-80	110.15
80-90	28.57
90-100	1.94
100-110	0.86
110-120	0.69
120-130	0.65
130-140	0.64
140-150	0.63
150-160	0.56
160-170	0.39
170-180	0.14

- Maximum Candela = 556.601 Located At Horizontal Angle = 0, Vertical Angle = 0 # 1 Vertical Plane Through Horizontal Angles (0 180) # 2 Vertical Plane Through Horizontal Angles (90 270)

Page 10 of 11


0 5 10 25 30 35 40 55 60 55 60 55 60 55 60 55 80 85 90 95 100 105	<u>0</u> 556.601 554.286 547.161 535.050 518.574 497.601 472.488 442.743 409.747 373.502 333.961 291.614 247.621 199.842 151.306 102.682 57.441 20.438 3.918 0.980 0.891 0.846	15 556.601 554.581 547.143 534.886 518.034 496.851 471.117 441.720 409.103 373.089 333.521 291.957 246.949 199.633 151.163 108.160 57.973 20.938 3.308 1.110 0.888 0.844	30 556.601 554.381 546.955 534.454 517.669 496.073 469.888 439.857 407.403 371.457 332.412 290.444 250.703 198.244 150.520 102.833 57.921 21.197 3.820 1.384 0.989 0.879	45 556.601 554.209 547.184 535.063 518.642 497.900 472.882 443.517 410.452 379.090 334.839 292.449 247.790 200.386 151.672 103.407 57.996 21.711 4.095 1.418 0.997 0.797	60 556.601 554.144 546.687 534.712 518.332 496.993 474.900 442.250 409.354 372.521 333.163 290.837 246.363 199.054 151.130 103.711 58.440 22.064 4.003 1.306 0.974 0.797	75 556.601 554.159 547.077 535.178 518.438 497.260 472.040 442.293 409.436 373.760 334.066 292.241 247.131 200.223 151.827 103.896 58.563 21.776 3.684 1.021 0.866 0.733	90 556.601 554.848 547.397 535.301 518.384 497.698 472.191 442.958 410.132 373.536 333.742 291.580 247.315 199.368 150.852 102.555 58.114 22.264 4.120 0.745 0.614 0.657
115	0.757	0.733	0.725	0.643	0.642	0.599	0.614
120 125	0.757 0.802	0.822 0.777	0.725 0.747	0.687 0.754	0.664 0.686	0.644 0.666	0.657 0.614
130 135 140	0.846 0.891 0.980	0.799 0.822 0.955	0.769 0.835 0.923	0.732 0.798 0.887	0.775 0.775 0.886	0.733 0.821 0.866	0.745 0.789 0.877
145 150 155	1.113 1.113 1.247	1.021 1.088 1.288	0.989 1.121 1.230	0.998 1.086 1.219	0.952 1.041 1.240	0.977 1.154 1.243	0.964 1.052 1.183
160 165 170 175	1.336 1.336 1.469 1.558	1.288 1.354 1.488 1.576	1.296 1.362 1.429 1.539	1.307 1.330 1.485 1.529	1.284 1.350 1.461 1.528	1.310 1.354 1.465 1.532 0.796	1.315 1.359 1.402 1.534
180	0.796	0.796	0.796	0.796	0.796	0.796	0.796



Page 11 of 11

Appendix A Product Photo

Picture 1

Picture 2

****End of test report****